Keerthi Madapusi Pera, University of Chicago
TITLE:
Periods, L-functions and Abelian Varieties
Ìý
Abstract:
PeriodsÌýare a special class of complex numbers, arising as integrals of differential forms on algebraic varieties. L-functions are analytic objects that generalize the Riemann zeta function. Both are objects admitting deceptively simple definitions, but carry deep arithmetic information.
In this talk,ÌýI'll explain a relationship between periods of abelian varieties with complex multiplication, and certain Artin L-functions, originally conjectured by P. Colmez, and sketch a proof of it that arose out of joint work with Andreatta, Goren and Ben Howard. Among other applications, this relationship has led to a proof by J. Tsimerman of the Andre-Oort conjecture for Siegel modular varieties.