Une Ă©quipe de l’UniversitĂ© ÎŰÎ۲ÝÝ®ĘÓƵ contribue Ă la dĂ©couverte d’une Ă©ruption de rayons gamma issus d’un lointain trou noir
En 2018, une Ă©ruption de rayons gamma de haute Ă©nergie provenant du trou noir supermassif situĂ© dans la galaxie Messier 87 (M87) a Ă©tĂ© observĂ©e pour la première fois en près de dix ans, Ă l’issue d’un projet international auquel a participĂ© une Ă©quipe de recherche de l’UniversitĂ© ÎŰÎ۲ÝÝ®ĘÓƵ. Cette dĂ©couverte importante a permis de mieux comprendre la physique des jets produits par les trous noirs, qui comptent parmi les plus importants mĂ©canismes de distribution d’énergie de l’intĂ©rieur d’une galaxie jusqu’aux confins de l’Univers.
Daryl Haggard, professeure au Département de physique et l’une des coordonnatrices du Groupe de travail sur l’observation multilongueur d’onde de l’EHT, a joué un rôle clé dans l’analyse des données issues des observations de 2018. Cette analyse, effectuée sur plusieurs années, a permis aux chercheuses et aux chercheurs de réaliser qu’ils avaient observé une éruption de rayons gamma pour la première fois depuis 2010. Leurs résultats ont été publiés cette semaine dans la revue Astronomy & Astrophysics.
« Sur la première image obtenue grâce aux observations de 2018, nous avons constaté que l’émission autour de l’anneau n’était pas homogène. Elle présentait des asymétries, notamment des zones plus claires, a indiqué la Pre Haggard. Les observations subséquentes réalisées en 2018 et décrites dans cet article confirment cette constatation, et montrent que l’angle des asymétries a changé. »
DirigĂ©e par Giacomo Principe, chercheur Ă l’UniversitĂ© de Trieste, l’étude a permis l’enregistrement de donnĂ©es sur l’ensemble du spectre Ă©lectromagnĂ©tique – des rayons X aux ondes radioĂ©lectriques –, grâce Ă plus de 25 observatoires, dont le tĂ©lescope Ă rayons gamma Fermi, de la NASA, l’observatoire de rayons X Chandra et trois rĂ©seaux de tĂ©lescopes de pointe Ă imagerie atmosphĂ©rique Tcherenkov, y compris le système VERITAS, auquel l’UniversitĂ© ÎŰÎ۲ÝÝ®ĘÓƵ participe activement.
L’éruption, qui a duré trois jours, provenait d’une zone compacte de l’horizon des événements du trou noir, mesurant moins de trois années-lumière de diamètre. Cette importante libération d’énergie et les observations subséquentes de l’anneau du trou noir ont révélé des liens étroits entre le trou noir et ses jets relativistes puissants de particules énergétiques.
« Les observations récentes réalisées à l’aide du réseau de télescopes plus sensibles de l’EHT, de même que celles qui seront effectuées au cours de prochaines années, fourniront un précieux éclairage ainsi que la possibilité extraordinaire d’étudier la physique du trou noir supermassif de la galaxie M87 », a affirmé Giacomo Principe.
Situé à 55 millions d’années-lumière, dans l’amas de galaxies de la Vierge, le trou noir de M87 a une masse équivalant à 6,5 milliards de fois celle du soleil. Ses jets relativistes peuvent nous servir de laboratoires naturels pour l’étude de l’accélération des particules jusqu’à une vitesse proche de celle de la lumière.
« Nous ignorons comment et à quel endroit les particules sont accélérées dans les jets d’un trou noir supermassif; c’est un mystère persistant, a indiqué Sera Markoff, professeure à l’Université d’Amsterdam et autre coordonnatrice du Groupe de travail sur l’observation multilongueur d’onde de l’EHT. Pour la première fois, nous pouvons combiner des images directes en provenance des régions proches de l’horizon des événements pendant l’éruption de rayons gamma causée par l’accélération de particules, et ainsi mettre à l’épreuve nos théories sur l’origine de ces éruptions. »
ł˘â€™Ă©tłÜ»ĺ±đ
L’article « », par le Groupe de travail sur l’observation multilongueur d’onde de l’EHT, la collaboration Event Horizon Telescope, la collaboration Fermi Large Area Telescope, la collaboration H.E.S.S., la collaboration MAGIC, la collaboration VERITAS et la collaboration EAVN, a été publié dans la revue Astronomy & Astrophysics.
Ses coauteurs et coautrices de l’UniversitĂ© ÎŰÎ۲ÝÝ®ĘÓƵ sont la professeure Daryl Haggard, le professeur Ken Ragan, Stephan O’Brien, Ph. D., Hope Boyce, Ph. D., et les Ă©tudiant(e)s au doctorat Nicole Ford, Matthew Lundy et Samantha Wong.
Les contributions de l’équipe de recherche de l’UniversitĂ© ÎŰÎ۲ÝÝ®ĘÓƵ ont Ă©tĂ© rendues possibles par le Conseil de recherches en sciences naturelles et en gĂ©nie du Canada (CRSNG), le Programme des chaires de recherche du gouvernement du Canada, le Fonds de recherche du QuĂ©bec – Nature et technologies (FRQNT), particulièrement par l’entremise du Centre de recherche en astrophysique du QuĂ©bec (CRAQ), l’Alliance de recherche numĂ©rique du Canada, qui comprend Compute Ontario () et Calcul QuĂ©bec (), et l’Institut canadien de recherche en physique des astroparticules Arthur-B.-McDonald.