Note: This is the 2013–2014 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Program Requirements
Required Courses (38 credits)
* Students who have taken CHEM 212 and/or CHEM 222 in CEGEP are exempted and must replace these credits with an elective course(s).
-
BIOL 200 Molecular Biology (3 credits)
Overview
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2013
Instructors: Bureau, Thomas E; Roy, Richard D W; Fagotto, Francesco; Zetka, Monique (Fall)
-
BIOL 202 Basic Genetics (3 credits)
Overview
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2014, Summer 2014
Instructors: Schoen, Daniel J; Chevrette, Mario; Hipfner, David (Winter) Dankort, David; Hipfner, David (Summer)
-
BIOL 301 Cell and Molecular Laboratory (4 credits)
Overview
Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.
Terms: Fall 2013, Winter 2014
Instructors: Moon, Nam Sung; Vogel, Jacalyn; Harrison, Paul (Fall) Moon, Nam Sung; Harrison, Paul; Reyes Lamothe, Rodrigo (Winter)
Fall or Winter
1 hour lecture and one 6-hour laboratory
Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT/BIOC 212, and BIOL 202. BIOL 206 recommended.
Restrictions: Not open to students who have taken or are taking BIOC 300. Requires departmental approval.
For approval email anne-marie.sdicu [at] mcgill.ca. Specify your ID number as well as the term and two lab day preferences.
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits) *
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2013, Winter 2014, Summer 2014
Instructors: Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell; Tsantrizos, Youla S; Pavelka, Laura (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Lumb, Jean-Philip; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel; Huot, Mitchell (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
-
CHEM 222 Introductory Organic Chemistry 2 (4 credits) *
Overview
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Fall 2013, Winter 2014, Summer 2014
Instructors: Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell; Perepichka, Dmytro; Pavelka, Laura (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Auclair, Karine (Winter) Pavelka, Laura; Daoust, Michel; Huot, Mitchell (Summer)
-
PHGY 209 Mammalian Physiology 1 (3 credits)
Overview
Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.
Terms: Fall 2013
Instructors: Wechsler, Ann; Gold, Phil; Ragsdale, David S (Fall)
Fall
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/co-requisites: BIOL 200, CHEM 212 or equivalent.
Restriction: Not open to students who have taken PHGY 211 or students who are taking and who have taken NSCI 200.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
-
PHGY 210 Mammalian Physiology 2 (3 credits)
Overview
Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.
Terms: Winter 2014
Instructors: White, John H; Wechsler, Ann; Takano, Tomoko (Winter)
Winter
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre-/co-requisite: BIOL 200, BIOL 201, BIOC 212, CHEM 212 or equivalent.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
Although PHGY 210 may be taken without the prior passing of PHGY 209, students should note that they may have some initial difficulties because of lack of familiarity with some basic concepts introduced in PHGY 209
-
PHGY 212 Introductory Physiology Laboratory 1 (1 credit)
Overview
Physiology : Exercises illustrating fundamental principles in physiology: Biological Signals Acquisitions, Blood, Immunology, Neurophysiology, Neuromuscular Physiology.
Terms: Fall 2013
Instructors: Martinez Trujillo, Julio; Glavinovic, Mladen I; Krnjevic, Kresimir (Fall)
(One 3-hour lab and one 1-hour lecture every second week.)
Corequisite: PHGY 209.
Restrictions: Required for Physiology students enrolled in PHGY 209. Open to BA &Sc. students and to others by permission of the instructor. Not open to students who have taken PHGY 212D1/D2.
Note: For students in a Physiology program, PHGY 212 should be taken concurrently with PHGY 209.
-
PHGY 213 Introductory Physiology Laboratory 2 (1 credit)
Overview
Physiology : Exercises illustrating fundamental principles in physiology: Central Nervous System, Cardiovascular, Respiration, Exercise Physiology, Molecular Endocrinology.
Terms: Winter 2014
Instructors: Guevara, Michael R; Mortola, Jacopo; Magder, Sheldon A; Watt, Douglas (Winter)
(One 3-hour lab and one 1-hour lecture every second week.)
Prerequisite: PHGY 212
Corequisite: PHGY 210.
Restrictions: Required for Physiology students enrolled in PHGY 210. Open to BA &Sc. students and to others by permission of the instructor. Not open to students who have taken PHGY 212D1/D2.
Note: For students in a Physiology program, PHGY 213 should be taken concurrently with PHGY 210.
-
PHGY 311 Channels, Synapses & Hormones (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2013
Instructors: Cooper, Ellis; Sjostrom, Per Jesper; Sharif Naeini, Reza (Fall)
Fall
3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 afternoons per term
Prerequisite: PHGY 209 or permission of the instructor.
-
PHGY 312 Respiratory, Renal, & Cardiovascular Physiology (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in renal, respiratory and cardiovascular functions explored beyond the introductory level.
Terms: Winter 2014
Instructors: Hanrahan, John W; Mortola, Jacopo; Shrier, Alvin (Winter)
-
PHGY 313 Blood, Gastrointestinal, & Immune Systems Physiology (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in immunology, blood and fluids, and gastrointestinal physiology.
Terms: Winter 2014
Instructors: Martinez Trujillo, Julio; Blank, Volker Manfred; Jones, Russell (Winter)
-
PHGY 314 Integrative Neuroscience (3 credits)
Overview
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2013
Instructors: Cullen, Kathleen E; Sharif Naeini, Reza; Pack, Christopher (Fall)
Fall
3 hours of lectures per week
Prerequisites: PHGY 209
Complementary Courses (12 credits)
12 credits selected as follows:
3 credits selected from:
-
BIOC 212 Molecular Mechanisms of Cell Function (3 credits)
Overview
Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2014
Instructors: Pause, Arnim; Bouchard, Maxime; Laberge, Christine E (Winter)
-
BIOL 201 Cell Biology and Metabolism (3 credits)
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2014
Instructors: Brouhard, Gary; Brown, Gregory G (Winter)
3 credits selected from:
-
BIOL 309 Mathematical Models in Biology (3 credits)
Overview
Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.
Terms: Fall 2013
Instructors: Glass, Leon (Fall)
Fall
3 hours lecture
Prerequisite: one year of calculus. An additional course in calculus is recommended
-
BIOL 373 Biometry (3 credits)
Overview
Biology (Sci) : Elementary statistical methods in biology. Introduction to the analysis of biological data with emphasis on the assumptions behind statistical tests and models. Use of statistical techniques typically available on computer packages.
Terms: Fall 2013
Instructors: Leung, Brian (Fall)
Fall
2 hours lecture and 2 hours laboratory
Prerequisite: MATH 112 or equivalent
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
Upper-Level Physiology (ULP) Courses
6 credits selected from the Upper-Level Physiology (ULP) course list as follows:
All Physiology courses 400 level and above.
Note:
The 6-credit course PHGY 459D1/D2 equals 3 credits of ULP and 3 credits of electives.
The 9-credit course PHGY 461D1/D2 equals 3 credits of ULP and 6 credits of electives.
-
ANAT 541 Cell and Molecular Biology of Aging (3 credits)
Overview
Anatomy & Cell Biology : Complex aging process, including theories and mechanisms of aging, animal model systems used to study aging, age-dependent diseases, for example, Alzheimer's, osteoporosis, and cancer, and age-related diseases, for example, Werner's syndrome and dyskeratosis congenita.
Terms: Winter 2014
Instructors: Lehoux, Stephanie; Autexier, Chantal; LeBlanc, Andrea (Winter)
-
BIOL 532 Developmental Neurobiology Seminar (3 credits)
Overview
Biology (Sci) : Discussions of all aspects of nervous system development including pattern formation, cell lineage, pathfinding and targeting by growing axons, and neural regeneration. The basis for these discussions will be recent research papers and other assigned readings.
Terms: Winter 2014
Instructors: Van Meyel, Donald; Kania, Artur; Fournier, Alyson Elise (Winter)
-
BMDE 519 Biomedical Signals and Systems (3 credits)
Overview
Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequency-domain descriptions of systems.
Terms: Fall 2013
Instructors: Kearney, Robert E (Fall)
(3-0-6)
Prerequisites: Satisfactory standing in U3 Honours Physiology; or U3 Major in Physics-Physiology; or U3 Major Physiology-Mathematics; or permission of instructor
-
EXMD 502 Advanced Endocrinology 01 (3 credits)
Overview
Experimental Medicine : This course is designed for U3 students who are in a major or honours program in anatomy, biology, biochemistry or physiology and for graduate students. A multidisciplinary approach will be used to teach biosynthesis and processing of hormones, their regulation, function and mechanism of action. The material will cover hypothalamic, pituitary, thyroid, atrial and adrenal hormones as well as prostaglandins and related substances.
Terms: Fall 2013
Instructors: Bateman, Andrew; Kokoeva, Maia (Fall)
Fall
-
EXMD 503 Advanced Endocrinology 02 (3 credits)
Overview
Experimental Medicine : Study of the parathyroids, gut and pancreatic hormones and growth factors. In addition, the role of hormones and growth factors in reproduction and fetal maturation will be discussed.
Terms: Winter 2014
Instructors: Bateman, Andrew; Kokoeva, Maia (Winter)
Winter
-
EXMD 506 Advanced Applied Cardiovascular Physiology (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. Current topics, methods and techniques for studying the cardiovascular system. Basic and applied cardiac electrophysiology, mechanisms of pacemaker activity, arrhythmias, the effects of drugs on cardiac functions, fetal circulation, coronary circulation, mechanics of blood flow, cardiovascular diseases, renal and neural control of the circulation, and cardiac assist devices.
Terms: Fall 2013
Instructors: Schwertani, Adel (Fall)
Fall
Prerequisite (Undergraduate): PHGY 313 or by permission of instructors
-
EXMD 507 Advanced Applied Respiratory Physiology (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of respiratory biology including: functional anatomy of the respiratory system, pulmonary statics and dynamics, chest wall and respiratory muscles, ventilation and perfusion, control of breathing, and defense mechanisms. This course is aimed at providing a solid grounding in pulmonary biology and its research applications.
Terms: Fall 2013
Instructors: Petrof, Basil (Fall)
Fall
Prerequisite: PHGY 313
-
EXMD 508 Advanced Topics in Respiration (3 credits)
Overview
Experimental Medicine : Offered in conjunction with the Department of Physiology. In depth coverage of developmental physiology, pulmonary vascular physiology, biology of airway smooth muscle, respiratory epithelium and molecular biology of respiratory muscles. Dyspnea, mechanical ventilation and respiratory failure will also be covered. This course emphasizes application of respiratory biology to basic and applied research and touches on pulmonary pathophysiology.
Terms: Winter 2014
Instructors: Fixman, Elizabeth Dee (Winter)
Winter
Prerequisite: EXMD 507
-
MIMM 413 Parasitology (3 credits)
Overview
Microbiology and Immun (Sci) : A study of the biology, immunological aspects of host-parasite interactions, pathogenicity, epidemiology and molecular biological aspects of selected parasites of medical importance. Laboratory will consist of a lecture on techniques, demonstrations and practical work.
Terms: Winter 2014
Instructors: Matlashewski, Greg J; Olivier, Martin; Ndao, Momar (Winter)
-
MIMM 414 Advanced Immunology (3 credits)
Overview
Microbiology and Immun (Sci) : An advanced course serving as a logical extension of MIMM 314. The course will integrate molecular, cellular and biochemical events involved in the ontogeny of the lymphoid system and its activation in the immune response. The course will provide the student with an up-to-date understanding of a rapidly moving field.
Terms: Fall 2013
Instructors: Fritz, Jörg; Lesage, Sylvie; Divangahi, Maziar (Fall)
Fall
3 hour lecture
Prerequisite: MIMM 314
-
MIMM 465 Bacterial Pathogenesis (3 credits)
Overview
Microbiology and Immun (Sci) : Organized by the ÎÛÎÛ²ÝÝ®ÊÓƵ Centre for the Study of Host Resistance. This course focuses on the interplay of the host and the pathogen. The cellular and molecular basis of the host defense mechanism against infections will be considered in relationship to the virulence factors and evasion strategies used by bacteria to cause disease.
Terms: Fall 2013
Instructors: Le-Moual, Herve; Olivier, Martin; Nguyen, Dao (Fall)
-
MIMM 466 Viral Pathogenesis (3 credits)
Overview
Microbiology and Immun (Sci) : A study of the biological and molecular aspects of viral pathogenesis with emphasis on the human pathogenic viruses including the retroviruses HIV and HTLV-1; herpes viruses; papilloma viruses; hepatitis viruses; and new emerging human viral diseases. These viruses will be discussed in terms of virus multiplication, gene expression virus-induced cytopathic effects and host immune response to infection.
Terms: Winter 2014
Instructors: Gatignol, Anne; Liang, Chen; Wainberg, Mark (Winter)
-
PHGY 524 Chronobiology (3 credits)
Overview
Physiology : An introduction to the field of chronobiology. The aim is to provide basic instruction on different types of biological rhythms, with particular focus on circadian rhythms.
Terms: Fall 2013
Instructors: Cermakian, Nicolas; Bernard, Daniel; Storch, Kai-Florian (Fall)
-
PSYC 470 Memory and Brain (3 credits)
Overview
Psychology : Memory systems are studied with an emphasis on the neural computations that occur at various stages of the processing stream, focusing on the hippocampus, amygdala, basal ganglia, cerebellum and cortex. The data reviewed is obtained from human, non-human primates and rodents, with single unit recording, neuroimaging and brain damaged subjects.
Terms: Winter 2014
Instructors: Rajah, Maria (Winter)
-
PSYT 500 Advances: Neurobiology of Mental Disorders (3 credits)
Overview
Psychiatry : Current theories on the neurobiological basis of most well known mental disorders (e.g. schizophrenia, depression, anxiety, dementia). Methods and strategies in research on genetic, physiological and biochemical factors in mental illness will be discussed. Discussion will also focus on the rationale for present treatment approaches and on promising new approaches.
Terms: Winter 2014
Instructors: Srivastava, Lalit K; Ernst, Carl; Wong, Tak Pan (Winter)
Winter
3 hours
Prerequisite (Undergraduate): BIOC 212 and BIOC 311, or BIOC 312, or BIOL 200 and BIOL 201, or PHGY 311, or PSYC 308 and an upper-level biological science course with permission of the instructors, or equivalent. Basic knowledge of cellular and molecular biology is required.
Restriction: Open to U3 and graduate students only.
Restriction: Graduate Studies: strongly recommended for M.Sc. students in Psychiatry.