ÎÛÎÛ²ÝÝ®ÊÓƵ

important

Note: This is the 2022–2023 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .

Major Atmospheric Science and Physics (69 credits)

Offered by: Atmospheric & Oceanic Sciences     Degree: Bachelor of Science

Program Requirements

This Major provides a solid basis for postgraduate study in meteorology, atmospheric physics, or related fields, as well as the necessary preparation for embarking on a professional career as a meteorologist directly after the B.Sc.

The program is jointly administered by the Department of Physics and the Department of Atmospheric and Oceanic Sciences. Students should consult undergraduate advisers in both departments.

Required Courses (57 credits)

  • ATOC 214 Introduction: Physics of the Atmosphere (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : An introduction to physical meteorology designed for students in the physical sciences. Topics include: composition of the atmosphere; heat transfer; the upper atmosphere; atmospheric optics; formation of clouds and precipitation; instability; adiabatic charts.

    Terms: Fall 2022

    Instructors: Zuend, Andreas (Fall)

    • Fall

    • 3 hours lecture

    • Prerequisite: CEGEP Physics, or the combination of PHYS 131 and PHYS 142, or permission of instructor.

  • ATOC 215 Oceans, Weather and Climate (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Laws of motion, geostrophic wind, gradient wind. General circulation of the atmosphere and oceans, local circulation features. Air-sea interaction, including hurricanes and sea-ice formation, extra-tropical weather systems and fronts, role of the atmosphere and oceans in climate.

    Terms: Winter 2023

    Instructors: Dufour, Carolina (Winter)

    • Winter

    • 3 hours lecture

    • Prerequisites: MATH 141; ATOC 214, or permission of instructor

  • ATOC 309 Weather Radars and Satellites (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Basic notions of radiative transfer and applications of satellite and radar data to mesoscale and synoptic-scale systems are discussed. Emphasis will be put on the contribution of remote sensing to atmospheric and oceanic sciences.

    Terms: Winter 2023

    Instructors: Tan, Ivy (Winter)

    • Winter

    • 3 hours lecture

    • Prerequisite: ATOC 215

  • ATOC 312 Rotating Fluid Dynamics (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Lagrangian and Eulerian time derivatives. Vorticity, divergence and Helmholtz decomposition. Two-dimensional Navier-Stokes equation for non-divergent flows. Rotating coordinate systems and the shallow water equations. Linear solutions, potential vorticity, and geostrophy in the shallow water context. Shallow-water quasi-geostrophic approximation, including Rossby waves and barotrophic (Rayleigh) instability.

    Terms: Fall 2022

    Instructors: Ioannidou, Evangelia (Fall)

  • ATOC 315 Thermodynamics and Convection (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Buoyancy, stability, and vertical oscillations. Dry and moist adiabatic processes. Resulting dry and precipitating convective circulations from the small scale to the global scale. Mesoscale precipitation systems from the cell to convective complexes. Severe convection, downbursts, mesocyclones.

    Terms: Fall 2022

    Instructors: Kirshbaum, Daniel (Fall)

  • MATH 222 Calculus 3 (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.

    Terms: Fall 2022, Winter 2023, Summer 2023

    Instructors: Paquette, Elliot; Wrobel, Konrad (Fall) Trudeau, Sidney (Winter) Barill, Gavin (Summer)

  • MATH 223 Linear Algebra (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.

    Terms: Fall 2022, Winter 2023

    Instructors: Macdonald, Jeremy; Pichot, Mikael (Fall) Macdonald, Jeremy (Winter)

    • Fall and Winter

    • Prerequisite: MATH 133 or equivalent

    • Restriction: Not open to students in Mathematics programs nor to students who have taken or are taking MATH 236, MATH 247 or MATH 251. It is open to students in Faculty Programs

  • MATH 314 Advanced Calculus (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.

    Terms: Fall 2022, Winter 2023

    Instructors: Roth, Charles (Fall) Fortier, Jérôme (Winter)

  • MATH 315 Ordinary Differential Equations (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.

    Terms: Fall 2022, Winter 2023, Summer 2023

    Instructors: Berk, Aaron (Fall) Bélanger-Rioux, Rosalie (Winter) Roth, Charles (Summer)

    • Prerequisite: MATH 222.

    • Corequisite: MATH 133.

    • Restriction: Not open to students who have taken or are taking MATH 325.

  • PHYS 230 Dynamics of Simple Systems (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.

    Terms: Fall 2022

    Instructors: Guo, Hong (Fall)

    • Fall

    • 3 hours lectures

    • Prerequisite: CEGEP Physics or PHYS 131.

    • Corequisite: MATH 222

    • Restriction: Not open to students taking or having passed PHYS 251

  • PHYS 232 Heat and Waves (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : The laws of thermodynamics and their consequences. Thermodynamics of P-V-T systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.

    Terms: Winter 2023

    Instructors: Hilke, Michael (Winter)

    • Winter

    • 3 hours lectures

    • Prerequisites: CEGEP Physics or PHYS 142, and CEGEP chemistry or CHEM 120, and PHYS 230.

    • Restriction: Not open to students taking or having passed PHYS 253

  • PHYS 241 Signal Processing (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Linear circuit elements, resonance, network theorems, diodes, transistors, amplifiers, feedback, integrated circuits.

    Terms: Winter 2023

    Instructors: Ryan, Dominic (Winter)

    • Winter

    • 2 hours lectures; 3 hours laboratory alternate weeks

    • Prerequisite: CEGEP physics or PHYS 142.

  • PHYS 257 Experimental Methods 1 (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.

    Terms: Fall 2022

    Instructors: Vachon, Brigitte (Fall)

    • Fall

    • 6 hours of laboratory and classroom work

    • Corequisite: PHYS 230 or PHYS 251

  • PHYS 258 Experimental Methods 2 (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Advanced laboratory work and data analysis as related to mechanics, optics and thermodynamics. Computers will be employed routinely for data analysis and for numerical computation, and, particularly, to facilitate the use of Fourier methods.

    Terms: Winter 2023

    Instructors: Cooke, David (Winter)

    • Winter

    • 6 hours of laboratory and classroom work

    • Prerequisite: PHYS 257

  • PHYS 331 Topics in Classical Mechanics (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Forced and damped oscillators, Newtonian mechanics in three dimensions, rotational motion, Lagrangian and Hamiltonian mechanics, small vibrations, normal modes. Nonlinear dynamics and chaos.

    Terms: Winter 2023

    Instructors: Gervais, Guillaume (Winter)

  • PHYS 333 Thermal and Statistical Physics (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. Fermi-Dirac and Bose-Einstein distributions; applications.

    Terms: Winter 2023

    Instructors: Rutledge, Robert (Winter)

    • Winter

    • 3 hours lectures

    • Prerequisite: PHYS 232

    • Restriction: Not open to students taking or having passed PHYS 362

  • PHYS 340 Majors Electricity and Magnetism (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : The electrostatic field and scalar potential. Dielectric properties of matter. Energy in the electrostatic field. Methods for solving problems in electrostatics. The magnetic field. Induction and inductance. Energy in the magnetic field. Magnetic properties of matter. Maxwell's equations. The dipole approximation.

    Terms: Fall 2022

    Instructors: Du, Lipei (Fall)

  • PHYS 342 Majors Electromagnetic Waves (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Maxwell's equations. The wave equation. The electromagnetic wave, reflection, refraction, polarization. Guided waves. Transmission lines and wave guides. Vector potential. Radiation. The elemental dipole; the half-wave dipole; vertical dipole; folded dipoles; Yagi antennas. Accelerating charged particles.

    Terms: Winter 2023

    Instructors: Gervais, Guillaume (Winter)

  • PHYS 346 Majors Quantum Physics (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : De Broglie waves, Bohr atom. Schroedinger equation, wave functions, observables. One dimensional potentials. Schroedinger equation in three dimensions. Angular momentum, hydrogen atom. Spin, experimental consequences.

    Terms: Fall 2022

    Instructors: Vachon, Brigitte (Fall)

Complementary Course (12 credits)

At least 6 of the 12 complementary credits must come from ATOC courses.

  • ATOC 357 Atmospheric and Oceanic Science Laboratory (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Students will gain hands-on experience in several fundamental atmospheric and oceanic science topics through practical experimentation. A diverse set of experiments will be conducted, ranging from in situ observations in Montreal, to remote sensing of clouds and radiation, to laboratory chemistry and water-tank experiments. As a background for these experiments, students will receive training on sensor principles and measurement error analysis, as well as the fundamental physical processes of interest in each experiment. They will learn to operate, and physically interpret data from, various sensors for in situ and remote observation of meteorological variables. Their training will also extend to operational weather observations, analysis, and forecasting.

    Terms: Winter 2023

    Instructors: Pal, Devendra (Winter)

    • Prerequisite(s): ATOC 214 or permission of instructor.

  • ATOC 404 Climate Physics (3 credits) *

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : This course covers the essentials of climate physics through the lens of one-dimensional, vertical atmospheric models. This includes shortwave and longwave radiative transfer, convection, phase changes, clouds, greenhouse gases, and atmospheric escape. This is an adequate level of detail for understanding Earth's climate, paleoclimate, anthropogenic climate change, or pursuing studies of Solar System planets and extrasolar planets.

    Terms: Fall 2022

    Instructors: Huang, Yi (Fall)

  • ATOC 512 Atmospheric and Oceanic Dynamics (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Introduction to the fluid dynamics of large-scale flows of the atmosphere and oceans. Stratification of atmosphere and oceans. Equations of state, thermodynamics and momentum. Kinematics, circulation, and vorticity. Hydrostatic and quasi-geostrophic flows. Brief introduction to wave motions, flow over topography, Ekman boundary layers, turbulence.

    Terms: Fall 2022

    Instructors: Straub, David N (Fall)

    • Fall

    • 3 hours lecture

    • Prerequisite (Undergraduate): MATH 314, MATH 315, or permission of instructor

  • ATOC 513 Waves and Stability (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Linear theory of waves in rotating and stratified media. Geostrophic adjustment and model initialization. Wave propagation in slowly varying media. Mountain waves; waves in shear flows. Barotropic, baroclinic, symmetric, and Kelvin-Helmholtz instability. Wave-mean flow interaction. Equatorially trapped waves.

    Terms: Winter 2023

    Instructors: Straub, David N (Winter)

    • Winter

    • 3 hours lecture

    • Prerequisite (Undergraduate): MATH 314, MATH 315, or permission of instructor

  • ATOC 515 Turbulence in Atmosphere and Oceans (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Application of statistical and semi-empirical methods to the study of geophysical turbulence. Reynolds' equations, dimensional analysis, and similarity. The surface and planetary boundary layers. Oceanic mixed layer. Theories of isotropic two- and three- dimensional turbulence: energy and enstrophy inertial ranges. Beta turbulence.

    Terms: This course is not scheduled for the 2022-2023 academic year.

    Instructors: There are no professors associated with this course for the 2022-2023 academic year.

    • Winter

    • 3 hours lecture

    • Prerequisite (Undergraduate): MATH 314, MATH 315, a previous course in fluid dynamics (such as ATOC 512), or permission of instructor

  • ATOC 517 Boundary Layer Meteorology (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Turbulence and turbulent fluxes, atmospheric stability, Monin-Obukhov similarity theory, surface roughness and surface fluxes, power law and logarithmic wind profiles including their application in wind energy and engineering sectors, convective and stably stratified boundary layers, internal boundary layer development, large-eddy simulations, fundamentals of boundary-layer parameterization in numerical models, and introduction to urban boundary layers.

    Terms: This course is not scheduled for the 2022-2023 academic year.

    Instructors: There are no professors associated with this course for the 2022-2023 academic year.

  • ATOC 521 Cloud Physics (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Review of dry and moist atmospheric thermodynamics concepts. Atmospheric aerosols, nucleation of water and ice. Formation and growth of cloud droplets and ice crystals. Initiation of precipitation. Severe storms and hail. Weather modification. Numerical cloud models.

    Terms: Winter 2023

    Instructors: Zuend, Andreas (Winter)

    • 3 hours

    • Prerequisites (Undergraduates): ATOC 315, MATH 314, and MATH 315, or permission of instructor.

    • Restriction: Not open to students who have taken ATOC 621.

  • ATOC 525 Atmospheric Radiation (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Solar and terrestrial radiation. Interactions of molecules, aerosols, clouds, and precipitation with radiation of various wavelengths. Radiative transfer through the clear and cloudy atmosphere. Radiation budgets. Satellite and ground-based measurements. Climate implications.

    Terms: Fall 2022

    Instructors: Huang, Yi (Fall)

  • ATOC 531 Dynamics of Current Climates (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : The general circulation of the atmosphere and oceans. Atmospheric and oceanic general circulation models. Observations and models of the El Niño and Southern Oscillation phenomena.

    Terms: Fall 2022

    Instructors: Ioannidou, Evangelia (Fall)

    • Fall

    • 3 hours lecture

    • Prerequisite (Undergraduate): MATH 315 or permission of instructor

    • Corequisite (Undergraduate): ATOC 312 or ATOC 512 or permission of instructor

  • ATOC 540 Synoptic Meteorology 1 (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Description of a geostrophic, hydrostatic atmosphere. Ageostrophic circulations and hydrostatic instabilities. Kinematic and thermodynamic methods of computing vertical motions. Tropical and extratropical condensation rates. Barotropic and equivalent barotropic atmospheres.

    Terms: Fall 2022

    Instructors: Gyakum, John Richard (Fall)

    • Fall

    • 2 hours lecture; 2 hours laboratory

    • Prerequisite (Undergraduate): MATH 314, MATH 315, or permission of instructor

  • ATOC 541 Synoptic Meteorology 2 (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Quasi-geostrophic theory, including the omega equation, as it relates to extratropical cyclone and anticyclone development. Frontogenesis and frontal circulations in the lower and upper troposphere. Cumulus convection and its relationship to tropical and extratropical circulations. Diagnostic case study work.

    Terms: This course is not scheduled for the 2022-2023 academic year.

    Instructors: There are no professors associated with this course for the 2022-2023 academic year.

    • Winter

    • 2 hours lecture; 2 hours laboratory

    • Prerequisite (Undergraduate): ATOC 312 and ATOC 540 or permission of instructor.

  • ATOC 548 Mesoscale Meteorology (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Administered by: Graduate Studies

    Overview

    Atmospheric & Oceanic Sciences : Theory of meteorologically important mesoscale phenomena including mesoscale instabilities, cumulus convection and its organization (including thunderstorms, squall lines, and other forms of severe weather), internal gravity waves, and topographically forced flows. Application of theory to the physical interpretation of observations and numerical simulations.

    Terms: This course is not scheduled for the 2022-2023 academic year.

    Instructors: There are no professors associated with this course for the 2022-2023 academic year.

  • ATOC 557 Research Methods: Atmospheric and Oceanic Science (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : This course is focused on the analysis of observational and modeling data, and the advantages and limitations of different data are discussed. The course covers several analysis methods (regression, principle component analysis, optimal estimation) commonly used in the atmospheric and oceanic sciences. In addition to the theory underlying these methods, there will be hands-on applications to observations of Earth.

    Terms: This course is not scheduled for the 2022-2023 academic year.

    Instructors: There are no professors associated with this course for the 2022-2023 academic year.

  • ATOC 558 Numerical Methods and Laboratory (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Numerical simulation of atmospheric and oceanic processes. Finite difference, finite element, and spectral modelling techniques. Term project including computer modelling of convection or large-scale flows in the atmosphere or ocean.

    Terms: Winter 2023

    Instructors: Kirshbaum, Daniel (Winter)

    • Winter

    • 1 hour lecture; 4 hours laboratory

    • Prerequisite (Undergraduate): ATOC 312 or ATOC 512, or permission of instructor

    • Restriction: Graduate students and final-year Honours Atmospheric Science students. Others by special permission.

  • ATOC 568 Ocean Physics (3 credits)

    Offered by: Atmospheric & Oceanic Sciences (Faculty of Science)

    Overview

    Atmospheric & Oceanic Sciences : Research methods in physical oceanography including data analysis and literature review. Course will be divided into five separate modules focusing on temperature-salinity patterns, ocean circulation, boundary layers, wave phenomena and tides.

    Terms: Winter 2023

    Instructors: Dufour, Carolina (Winter)

    • Winter

    • 3 hours lecture

    • Prerequisite (Undergraduate): ATOC 512 or permission of instructor

    • Restriction: Graduate students and final-year Honours Atmospheric Science students. Others by special permission.

  • PHYS 339 Measurements Laboratory in General Physics (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Introduction to modern techniques of measurement. The use of computers in performing and analysing experiments. Data reduction, statistical methods, report writing. Extensive use of computers is made in this laboratory; therefore some familiarity with computers and computing is an advantage.

    Terms: Winter 2023

    Instructors: Reisner, Walter (Winter)

    • Winter

    • 6 hours

    • Prerequisite: PHYS 241 or permission of instructor

  • PHYS 404 Climate Physics (3 credits) *

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : This course covers the essentials of climate physics through the lens of one-dimensional, vertical atmospheric models. This includes shortwave and longwave radiative transfer, convection, phase changes, clouds, greenhouse gases, and atmospheric escape. This is an adequate level of detail for understanding Earth's climate, paleoclimate, anthropogenic climate change, or pursing studies of Solar System planets and extrasolar planets.

    Terms: Fall 2022

    Instructors: Huang, Yi (Fall)

  • PHYS 432 Physics of Fluids (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : The physical properties of fluids. The kinematics and dynamics of flow. The effects of viscosity and turbulence. Applications of fluid mechanics in biophysics, geophysics and engineering.

    Terms: Winter 2023

    Instructors: Cumming, Andrew (Winter)

  • PHYS 434 Optics (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Fundamental concepts of optics, including applications and modern developments. Light propagation in media; geometric optics and optical instruments; polarization and coherence properties of light; interference and interferometry; diffraction theory and applications in spectrometry and imaging; Gaussian beams, Fourier optics and photonic band structure. A laboratory component provides hands-on experience in optical setup design, construction and testing of concepts introduced in lectures.

    Terms: Fall 2022

    Instructors: Cooke, David (Fall)

    • Fall

    • 2 hours lecture, 3 hours lab

    • Corequisite: PHYS 342 or PHYS 352, or permission of the instructor

  • PHYS 439 Majors Laboratory in Modern Physics (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Advanced level experiments in modern physics stressing quantum effects and some properties of condensed matter.

    Terms: This course is not scheduled for the 2022-2023 academic year.

    Instructors: There are no professors associated with this course for the 2022-2023 academic year.

    • Fall

    • 6 hours

    • Prerequisite: PHYS 339.

    • Corequisite: PHYS 346

    • Restriction: Not open to students with credit in PHYS 359 except with permission of instructor

  • PHYS 449 Majors Research Project (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : A supervised research project.

    Terms: Fall 2022, Winter 2023

    Instructors: Hanna, David (Fall) Hilke, Michael (Winter)

    • Winter or Summer

    • 6 hours

    • Restrictions: U2 or U3 students in a Physics program, or permission of the instructor.

  • PHYS 512 Computational Physics with Applications (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Computational methods in Physics illustrated with realworld applications.

    Terms: Fall 2022

    Instructors: Sievers, Jonathan Le Roy (Fall)

    • U3 or graduate students in Physics, Chemistry, or Engineering, or permission of the instructor. Basic familiarity with computer programming highly recommended.

* Students cannot take both ATOC 404 and PHYS 404.

Faculty of Science—2022-2023 (last updated Aug. 24, 2022) (disclaimer)
Back to top