Dr. Michael Weber
Assistant Professor
MD, FRCSC
Currently supervising students
Complex & Minimally Invasive Spine Surgery
- Redox-based physical plasma therapy for controlling spread of metastatic bone cancer and orthopedic infections
- Composite 3D printed scaffolds for stabilization, tissue repair and local therapeutic delivery in bone tumor resections
- Mechanically and Biologically Functional Adhesives for Intervertebral Disc Repair and Regeneration
- Management of Metastatic Spinal Tumors Using Functional Implants for Local Drug Delivery
Trauma & Spine
- Metastatic Tumor Research and Outcome Network (MTRON)
- Canadian Spine Outcomes and Research Network (CSORN)
My research interests and program include basic, translational & clinical research. The development of novel assessment tool and personalized surgical treatment to improve outcomes in patients with metastatic spine tumor are central objectives of my basic science research program. Spinal metastasis greatly diminishes patients’ quality of life. With advancement in medical, radiation and surgical oncology, these patients are living longer thereby increasing the disease burden. Surgical bone resection of metastatic tumors leads to large bone defects that cannot self-repair, presenting an unmet clinical need for improved treatments. Consequently, there is a necessity to undertake innovative approaches to bridge unmet clinical needs in bone repair and anticancer therapeutics in the treatment of bone metastasis. My team and I are currently working on the development of bone implants, used as reservoirs for the local release of therapeutics agents at the site of bone-metastasis resection. We have previously developed a novel 3D printing fabrication technique of bone implants that are specifically designed to replace the defect generated after resection of a destructive bony metastasis. This 3D printing technique allows for the fabrication of bio ceramic implants that are tailored or customized to the patient’s anatomy. Preliminary results using animal models showed these bone grafts were efficient in promoting bone tissue healing and regeneration. This technology has generated great enthusiasm in the orthopedic community both here at the ÎÛÎÛ²ÝÝ®ÊÓƵ’s Montreal General Hospital and beyond. These implants can be loaded with bioactive drugs that could either prevent infections post-surgery or improve speed and quality of bone repair, and work is ongoing to test effects of drug infused implants on tumor growth and bone repair. Additional goals include the development of a novel tool to assess patient outcomes following radiation therapies and surgical removal of bone metastasis. We also aim to identify markers for enhanced patient outcomes, in order to better predict which patients may benefit from more aggressive treatment to better their quality of life. Thus, my research harness the potential of 3D printing technique to promote and bridge two areas of high potential for innovation and development of cancer treatment and beyond, namely bone tissue engineering and drug delivery systems.