ÎÛÎÛ²ÝÝ®ÊÓƵ

News

Major breakthrough in the diagnosis of Parasitic Diseases

Published: 10 June 2010

A team of researchers from ÎÛÎÛ²ÝÝ®ÊÓƵ/MUHC validates a novel screening tool in the fight against Chagas disease

Chagas disease is one of the most deadly parasitic diseases in the world. It affects more than 10 million people, primarily in the Americas. In South America alone it kills 50 000 people each year. A reliable and rapid diagnosis is the key in the battle against infection but until now, this has been next to impossible. Dr. Momar Ndao and his team at the Research Institute of the MUHC have developed a new diagnostic approach that will help in the fight against Chagas disease.Their results were recently published in the Journal of Clinical Microbiology.

Endemic in South America, the American trypanosomiasis, or Chagas disease, is transmitted to humans via the parasite Trypanosoma cruzi. The disease is usually transmitted through the bite of an infected insect or 'kissing bug'. The symptoms are variable, but as the disease progresses serious chronic symptoms can appear, such as heart disease and malformation of the intestines. Most people affected may remain without symptoms for years, making diagnosis difficult.

Chagas disease is also transmitted from mother to unborn child and can be passed on for as many as four ÎÛÎÛ²ÝÝ®ÊÓƵ without symptoms. "In other words, a person born in North America by a mother who was infected can transmit the disease to offspring without having traveled," says Dr. Ndao, Laboratory Director of the National Reference Center for Parasitology (NRCP) of the Research Institute. There is an urgent need for action on this disease as it is under-diagnosed and there is no effective treatment.

This situation raises some serious public health concerns with respect to blood transfusions and organ transplants, because many people may be silent carriers of the disease. "The aim of our study was to find new approaches to improve reliability of diagnosis and screening of blood banks," says Dr. Ndao, who is also a researcher at the Centre for Host Parasite Interactions at ÎÛÎÛ²ÝÝ®ÊÓƵ University.

The researchers have validated a reliable screening technique using mass spectrometry technology that identifies common biological markers - or biomarkers - between the interaction of host (humans) and the parasite. They found that in 99% of cases, the parasites left very specific markers. 'It's as if the parasite left his own signature in the infected person, which could help to diagnose Chagas disease" says Dr. Ndao.

"The use of these biomarkers is a revolution in diagnostic confidence and protection of possible contamination of blood banks," says Dr. Ndao "Moreover, these biomarkers have potential therapeutic effects of paving the way for the development of vaccines for Chagas, which could be extended to other parasitic diseases."


Funding
This study was made possible by grants from the Canadian Institutes of Health Research (CIHR) and by ÎÛÎÛ²ÝÝ®ÊÓƵ University.

About the Study
The article "Identification of Novel Diagnostic Serum Biomarkers for Chagas' Disease in Asymptomatic Subjects by Mass Spectrometric Profiling," published in The Journal of Clinical Microbiology, was co-authored by Momar Ndao and Brian J. Ward from the RI of the MUHC and ÎÛÎÛ²ÝÝ®ÊÓƵ University; Terry W. Spithill from ÎÛÎÛ²ÝÝ®ÊÓƵ University and Charles Stuart University and Cynthia Santamaria from ÎÛÎÛ²ÝÝ®ÊÓƵ University; Rebecca Caffrey from University of California, Berkeley; Hongshan Li from High School of Business, California; Vladimir N. Podust from Vermillion Inc., California, Regis Perichon from Diagnostic Biomarker Evaluation Group Ortho-Clinical Diagnostics, New Jersey; Alberto Ache from Ministerio de Salud y Desarrollo Social, Caracas, Venezuela; Mark Duncan, University of Colorado and Malcolm R. Powell from Western Carolina University and Universidad del Valle Guatemala.

On the Web
· Research Institute of the MUHC:
· ÎÛÎÛ²ÝÝ®ÊÓƵ University Health Centre:
· ÎÛÎÛ²ÝÝ®ÊÓƵ University: www.mcgill.ca/
· Journal of Clinical Microbiology:

Back to top